

			Skip to content
		
	
		
			
				
					
	
				
			
													
						
	Awan
Learn - Create - Contribute

					

											

		

	

				

			

			
	
				
			
													
						
		
				
				Home
	About
	Blog
	Contact

		

	
	

					

											

		

	

		

	

	

	
		
			
			
	
		
			
									
						
	Awan
Learn - Create - Contribute

					

																	
						
		
						
						

		
		
		
	
	
		
	
	
	
		

	

	
	
	
		
						
				
	
		
	Home / Web Development / HTML to PDF JavaScript – Example with Code
		
			
				Helpful Tips | Web Development			
		

		HTML to PDF JavaScript – Example with Code

	ByAwan Shrestha					
						September 12, 2023February 24, 2024					
					

	
		
					

	

			

	
In this blog we will see how we can convert the HTML site to PDF using JavaScript.

For a project, I needed to convert some HTML to PDF using JavaScript.

It was a basic site. There would be a form inside a div, and all I needed to do was generate the pdf out of that div and show it in a new tab. All in the client side, no backed server.

The main tasks here were:

	To generate the HTML out of PDF.
	To show the generated pdf in a new tab.

HTML to PDF using JavaScript

So, the first part here. Pretty simple HTML to PDF.

A quick Google Search and I came upon this html2pdf library.

As stated in its documentation “html2pdf.js converts any webpage or element into a printable PDF entirely client-side using html2canvas and jsPDF.”

That was all I wanted. There were lots of other tutorials out there on it as well.

It all worked and it downloaded the pdf as well. But the pdf was blank.

html2pdf generate and return Blank or Empty PDF

That was a bit of weird. A few searches and turns out, there were some issues with the version.

Used the 0.9.3 version and issue solved.

CDN Link: https://cdnjs.cloudflare.com/ajax/libs/html2pdf.js/0.9.3/html2pdf.bundle.min.js

It printed the div with all the contents.

JavaScript Code:

let element = document.getElementById('div-to-print')

html2pdf().from(element).save();

So, it saved / downloaded the pdf file.

But I didn’t need it to be downloaded, I need it to show in a new browser tab.

Open PDF in new tab instead of Download – JavaScript – using Blob

We need to create a new blob from the pdf file and create new URL to show that file. Reading this issue, I got to know that using html2pdf promise API, we could get the file instead of downloading it. And then use it to create the blob.

How we would do it with a normal file.

const filed = document.querySelector('input[type=file]').files[0];
let file = new Blob([filed], { type: 'application/pdf' });
let fileURL = URL.createObjectURL(file);
window.open(fileURL);

Using it with the pdf generated from HTML by html2pdf:

async function printHTML() {

let worker = await html2pdf().from(element).toPdf().output('blob').then((data) => {
 console.log(data)
 let fileURL = URL.createObjectURL(data);
 window.open(fileURL);
 })
}

It worked. The PDF was now not downloading, but being opened in new tab. And now, I styled the div using CSS. But there was problem.

html2pdf CSS Not Working

The CSS I had written for the div was not loading up. The CSS was not working with html2pdf.

A few searches, and found out that external CSS was not being loaded up by html2css. So, only HTML was being printed. Not the CSS.

The workaround was to write CSS in HTML with style tag or to use inline CSS. Also, few workarounds in this issue.

Finally the PDF was being generated as I needed. Just one more caveat.

html2pdf PDF Text not Selectable

The texts in PDF were not being selectable. Now this might not be an requirement for most of the projects, but I needed it.

html2pdf generates pdf as canvas image. It had been using html2canvas all along. So, there were no texts. They were just canvas images out of HTML being converted to PDF.

I had to search for another library. Why not use the one I had been using all the way along under the hood.

jsPDf is used by html2pdf. So, I tried for jsPDF.

doc.fromHTML(document.getElementById("div-to-print"),
 22, // Margins
 17,
 {'width': 400},
 function (a) {
 // doc.save("HTML2PDF.pdf"); // To Save
 let blobPDF = new Blob([doc.output()], { type: 'application/pdf' });
 let blobUrl = URL.createObjectURL(blobPDF);
 window.open(blobUrl);
});

And all good here.

Open PDF in new tab instead of downloading from jsPDF

As for opening in new tab instead of downloading PDF from jsPDF, similar as in html2pdf case, in the callback function, we can pass doc.output() to create the blob.

And the PDF being generated was in text, not images.

So, all good and I added the CSS. But.

jsPDF CSS not Working

Turns out jsPDF does not work with CSS. And to make it work with CSS, it was to use html2canvas. And that’s what html2pdf had been doing all along.

We can easily pass margins in the jsPDf. And also it supported the html attributes as This is p one as old times. But the reason I was needing CSS was because the div I was trying to print had two divs inside of it. And one of them needed to be centered aligned both vertically and horizontally.

The next thing I was searching was “How to center align div child with HTML only without using CSS”.

Turns out there was text API in the jsPDF that would take multiple parameters and make the job easy without CSS.

API.text = function(text, x, y, flags, angle, align);

Multiple such texts and the job would be done.

But instead of writing multiple texts, if I could do it with multiple HTML elements with withHTML function, then that could be great. Turns out it works.

By adding another HTML element block in callback of function adding previous block, it could be done.

A few more calculations, and using the calculated values as margins, it could be perfectly center aligned.

This, this and this were helpful.

let pageHeight = doc.internal.pageSize.height || doc.internal.pageSize.getHeight()
let pageWidth = doc.internal.pageSize.width || doc.internal.pageSize.getWidth()
let recipientBlock = document.querySelector(".div2-block")
let rHeight = recipientBlock.clientHeight
let rWidth = recipientBlock.clientWidth

doc.fromHTML(document.querySelector(".div1-block"),
 22, 17, { 'width': 200, 'height': 200 },
 function (a) {
 doc.fromHTML(document.querySelector(".div2-block"),
 pageWidth / 2 - rWidth / 4,
 pageHeight / 2 - rHeight / 4,
 { 'width': 200, 'height': 200 },
 function (a) {
 let blobPDF = new Blob([doc.output()], { type: 'application/pdf' });
 let blobUrl = URL.createObjectURL(blobPDF);
 window.open(blobUrl);
 });
 });

Finally, around the end of the project.

Finally, one more thing was to do. That was to set the width and height of the final pdf.

It was given there in documentation and pretty easy.

Pass the Height and Width as an array and specify the unit. For some reasons, unit: “px” for pixels was having problems. So, used the “pt”. It worked.

let doc =new jsPDF({orientation: 'l', unit: 'pt', format: [widthForJsPDF, heightForJsPDF]})

So, this is how a project is done, converting HTML to PDF using JavaScript.

							

Was this blog post helpful?

	Yes

	No

	Still Working on it

Vote

						

And all I did was Google searches.

But how it all works? Want to know? Click here.

	
	
		
			Post Tags:		
		#CSS#Data Structures#HTML#JavaScript#Web Development	

	

	
		Post navigation

		

PreviousReal-Time Data Processing using AWSNext

Optimizing Costs and Enhancing Performance: Leveraging a Single Load Balancer for Multiple Websites
			
			
				
					Similar Posts
					
						
							
								

			
			
							

		
			
		

			
			
				Cloud | Helpful Tips			
		

		Real-Time Data Processing using AWS

	ByAwan Shrestha					
						July 11, 2023February 24, 2024					
					

	
		Real-time data is something that is being updated on a near-to-real-time basis. We will be using different AWS services to create a data pipeline that will be used to handle and integrate this real-time data and finally load it into a Redshift Data Warehouse.

	

	
		
		
			
				Read More Real-Time Data Processing using AWS

			
			
							

		
			
		

			
			
				Helpful Tips			
		

		[SOLVED] How to Disable Edge Alt + Tab Settings in Windows 10

	ByAwan Shrestha					
						July 3, 2021February 26, 2023					
					

	
		[SOLVED]: In this blog, we are going to see how to remove Edge Browser Alt Tabs Settings in Windows 10.

	

	
		
		
			
				Read More [SOLVED] How to Disable Edge Alt + Tab Settings in Windows 10

			
			
							

		
			
		

			
			
				Cloud | Featured | Helpful Tips | Technology			
		

		Journey to the World Finals – Imagine Cup 2021

	ByAwan Shrestha					
						June 12, 2021February 25, 2023					
					

	
		Me and my team were selected as the World Finalists in the Imagine Cup 2021. This blog is about our journey to the World Finals

	

	
		
		
			
				Read More Journey to the World Finals – Imagine Cup 2021

			
			
							

		
			
		

			
			
				Cloud | Helpful Tips | Web Development			
		

		Optimizing Costs and Enhancing Performance: Leveraging a Single Load Balancer for Multiple Websites

	ByAwan Shrestha					
						October 18, 2023February 24, 2024					
					

	
		Optimizing Costs and Enhancing Performance: Leveraging a Single Load Balancer for Multiple Websites

	

	
		
		
			
				Read More Optimizing Costs and Enhancing Performance: Leveraging a Single Load Balancer for Multiple Websites

			
			
							

		
			
		

			
			
				Cloud | Featured | Linux | Web Development			
		

		[Working] How to install WordPress on Ubuntu 20.04 Linux | Azure VM

	ByAwan Shrestha					
						July 18, 2021February 27, 2023					
					

	
		In this blog we are going to see how to Install WordPress on Ubuntu 20.04 Linux using LAMP Stack in Azure VM.

	

	
		
		
			
				Read More [Working] How to install WordPress on Ubuntu 20.04 Linux | Azure VM

			
			
							

		
			
		

			
			
				Helpful Tips			
		

		Most Useful Websites for Students, Graphic Designers and Web Developers

	ByAwan Shrestha					
						March 25, 2022February 23, 2023					
					

	
		In this blog I will list out the most useful websites for students, graphic designers and web developers.

	

	
		
		
			
				Read More Most Useful Websites for Students, Graphic Designers and Web Developers

	One Comment
			
			
				
					
												Bash says:					

					
						August 15, 2022 at 6:12 pm					

									

				
					Some genuinely interesting points you have written. Assisted me a lot, just what I was looking for : D.

				

				Reply
			
		

			
		Leave a Reply Cancel reply
Your email address will not be published. Required fields are marked *
Comment *
Name *

Email *

Website

 Save my name, email, and website in this browser for the next time I comment.

Δ

	

	

			
					
		
	
		SearchSearch

Recent Posts

	How to Connect and Deploy Private GitHub Repositories to cPanel Shared Hosting using GitHub Actions
	Optimizing Costs and Enhancing Performance: Leveraging a Single Load Balancer for Multiple Websites
	HTML to PDF JavaScript – Example with Code
	Real-Time Data Processing using AWS
	Host React App with AWS Amplify and GitHub

Categories

	Algorithms

	Cloud

	Errors

	Featured

	Helpful Tips

	Linux

	Security

	Technology

	Uncategorized

	Web Development

Tags

Apache
aws
Azure
Cloud
cPanel
CSS
dataprocessing
Data Structures
Dijkstra's Algorithm
Embedded System
Flight Simulation
GitHub
Graph
Hackathon
HTML
Imagine Cup
JavaScript
Linux
load balancer
Login Error
Microsoft Teams
MLH
MLH Fellowship
MongoDB
MySQL
Nanobots
Node.js
optimization
password
PHP
react
Socket.IO
Time Management
Ubuntu
Virtual Machine
vis.js
VR
warehouse
Web Development
WebXR
Windows
WordPress
World Finals
	

	

	
	
	
		
	
				
			
									
						
	
		
AWAN

Learn. Create. Contribute.
	

					

										
						
	
		
SITE LINKS

	

	
			
				
				Blog
	About Us
	Contact Us
	Privacy Policy
	Terms and Conditions

		

	
		

					

										
						
	
		
SOCIAL LINKS

	

	
		

	
		
	

					
								
		
	

	
				
			
									
											

										
						

	
		Copyright © 2024 - Awan

	

					

										
											

								

		

	

	

			
				
		

		
						
				
					
					
				
			

			
								
		
				
				Home
	About
	Blog
	Contact

		

	
	

							

		

	

	

